1KAPAK KONUSU - MAKALE Şekil 2. Balkondan çıkan duman bulutunun önden görünümü sı olmaksızın dumanın atriyumu doldurmasına izin verme yaklaşımını içerir. Bazı alanlar için, tasarım yangınında dumanın a\anı doldurma süresi tahliye için yeterli olan süreden fazladır. Duman doldurma süresi alev l enmeden dumanın önceden belirlenmiş yüksekliğe düşmesine kadar geçen süredir. Doğal duman doldurmaya yönelik olan uygulamalar çok yaygın değildir çünkü atriyumun işgal edilmiş en yüksek katının üzerindeki boşlukta çok büyük bir boşluk olması gereklidir. Aşağıda anlatılan analiz yöntemlerinden herhangi birisi bu sistem için kullanılabilir. Bina tahliye sürelerinin hesaplamalarının, fark etme, doğrulama ve hareket öncesi aşamalarını içermesi gereklidir. Sürekli Mekanik Duman Boşaltımı Bu, Kuzey Amerika'da en sık ol<:Jrak kullanılan yaklaşımdır. Bu sistem duman tabakasının alt kısmını tasarım yangını için önceden belirlenmiş yükseklikte tutacak ölçülere sahip bir mekanik duman egzozuna sahiptir. ,. Sürekli Olmayan Mekanik Duman Boşaltımı Bu yaklaşımda mekanik duman egzozu kullanmaktadır ancak egzozun akış hızı sürekli mekanik egzozunkinden daha düşüktür ve böylece egzoz, duman tabakasının alçalma hızını sadece belirli bir süre için yavaşlatır ve binadakilerin binayı güvenli şekilde tahliye etmesine izin verir. Bu yöntemin en azından, binadakiİerin güvenli şekilde binayı boşaltmaları için gerekli olan süreye yönelik olarak önceden belirlenmiş olan yüksekliği muhafaza etmesi gereklidir. Doğal duman doldur1 YANGIN ve GÜVENLİK SAYI 153 54 & Tavan Jet Sistemi Atriyum Yangını Duman çıkışı Gösterilmemiştir Atriyum Yangını Alan Modeli İdealizasyonu Şekil 3. Bir atriyum yangının idealleştirilmiş alan modeli çizimi. ma sistemleri için geçerli olan tahliye süresi hesaplamaları ile ilgili konular burada da geçerlidir. Sürekli Doğal Havalandırma Daha önce belirtildiği gibi bu tür havalandırmanın 1 88l 'deki Ring Theateryangınına uzanan bir geçmişi vardır. Bu yaklaşım ABD'de sık olarak görülmemektedir ancak Avrupa, Avusturalya, Yeni Zelanda ve Japonya'da sık olarak kullanılmaktadır. Bu yöntem, egzoz fonlar yerine, atriyumun üst kısmında veya yanlarında elektrikli çalışmayan duman açıklıkları kullanmaktadır. Bu tür havalandırmaya genelde "yer çekimi ile havalandırma" denilmektedir çünkü duman kaldırma kuweti ile dışarı atılmaktadır. Havalandırma boşluklarından geçen dumanın akış hızının, duman tabakasının alt kısmının sınırsız bir süre için önceden belirlenmiş yükseklikte kalmasını sağlayacak seviyede olması gereklidir. Önceden belirlenmiş yükseklikle ilgili daha önceden yapılmış olan açıklamalar burada da geçerlidir. Doğal bir havalandırmadan gerçekleşen bir sürekli kütle akış oranına yönelik matematiksel eşitlik ileriki bölümlerde anlatılmaktadır. Sürekli doğal havalandırma sistemlerinin hesaplamalı akışkanlar dinamiği (CFD) modeli yardımı ile analiz edilmesi gereklidir. Bu model Bölüm 20'de anlatılmaktadır. Sürekli Olmayan Doğal Havalandırma Bu yaklaşım sürekli doğal havalandırma yaklaşımına benzerdir ancak tek farkı , burada duman tabakası alçalma hızının sadece binadakilerin alanı güvenli şekilde tahliye etmelerine izin verecek kadar bir süre boyunca azaltılmasıdır. Bu yöntemin en azından, binadakilerin alanı tahliye etmeleri için gerekli olan süreye yönelik olarak daha önce belirtilmiş olan yüksekliği muhafaza etmesi gereklidir. Bunun yanında sürekli olmayan doğal havalandırma sistemlerinin bir CFD modeli yardımıyla analiz edilmesi önerilmektedir. Doğal duman doldurma sistemlerine yönelik tahliye süresi hesaplaması ile ilgili hususlar burada da geçerlidir. Analiz Yöntemleri Atriyum duman kontrol sistemlerinin analizi için kullanılabilecek olan yöntemler matematiksel eşitlikler, alan yangın modellemesi, CFD modellemesi ve ölçek modellemesidir. Matematiksel Eşitlikler Atriyum duman kontrolü pek çok farklı matematiksel eşitlik kullanır. Bunların bir kısmı temel mühendislik kuramlarına dayalı olurken diğerleri deneysel verilere dayanan deneysel korelasyonlardır. Duman doldurma, doğal havalandırma ve duman geri akışını önlemeye yönelik hava akış sürat eşitlikleri bu bölümün ileri kısımlarında anlatılmaktadır. Bölüm 16 sürekli mekanik duman boşaltmaya yönelik matematiksel eşitlikler anlatmakta olup bu eşitlikler bir sonrak i bölümde anlatılan alan yangın modeli kavramlarına dayanmaktadır. Alan yangın modellemesinin anlatıldığı bir sonraki bölümde, geçiş alanında dumana maruz
RkJQdWJsaXNoZXIy MTcyMTY=