Yangın ve Güvenlik Dergisi 182. Sayı (Nisan 2016)

YANGIN ve GÜVENL ø K SAYI 182 73 YANGIN - MAKALE Kaynaklar: [1] ASCE 7, American Society of Civil Engineers Standard 7 Minimum Design Loads for Buildings and Ot- her Structures, American Society of Civil Engineers, 2005. [2] DoD, Design of Buildings to Resist Progressive Collapse. Unified Fa- cilities Criteria (UFC) 4-023-03, US Department of Defense (DoD), 2010. [3] GSA, Progressive Collapse Analysis and Design Guidelines for New Fe- deral Office Buildings and Major Modernization Projects, US Gene- ral Services Administration (GSA), 2013. [4] A.S. Usmani, Y.C. Chung, J.L. Tore- ro, How did the WTC towers col- lapse: a new theory, Fire Saf. J. 38 (2003) 501–533. [5] A.S. Usmani, G.R. Flint, A. Jowsey, S. Lamont, B. Lane, J. Torero, Mo- delling of the collapse of large multi-storey steel frame structu- res in fire, Proceedings of the 4 th International Conference on Ad- vances in Steel Structures (2005) 991–998. [6] A.S. Usmani, Stability of the Word Trade Center Twin Towers structural frame in multiple floor fires, J. Eng. Mech. 131 (6) (2005) 654–657. [7] H.M. Ali, P.E. Senseny, R.L. Alpert, Lateral displacement and collap- se of single-storey steel frames in uncontrolled fires, Eng. Struct. 26 (2004) 593–607. [8] C. Fang, B.A. Izzuddin, R. Obiala, A.Y. Elghazouli, D.A. Nethercot, Robustness of multi-storey car parks under vehicle fire, J. Constr. Steel Res. 75 (2012) 72–84. [9] C. Fang, B.A. Izzuddin, A.Y. Elgha- zouli, D.A. Nethercot, Robustness of multi-storey car parks under localised fire—towards practi- cal design recommendations, J. Constr. Steel Res. 90 (2013) 193– 208. [10] C. Fang, B.A. Izzuddin, A.Y. Elgha- zouli, D.A. Nethercot, Simplified energy-based robustness assess- ment for steel-composite car parks under vehicle fire, Eng. Stru- ct. 49 (2013) 719–732. [11] D. Lange, C. Roben, A.S. Usmani, Tall building collapse mechanisms initiated by fire: mechanisms and design methodology, Eng. Struct. 36 (2012) 90– 103. [12] R.R. Sun, Z.H. Huang, I. Burgess, Progressive collapse analysis of steel structures under fire condi- tion, Eng. Struct. 34 (2012) 400– 413. [13] R.R. Sun, Z.H. Huang, I. Burgess, The collapse behaviour of braced steel frames exposed to fire, J. Constr. Steel Res. 72 (2012) 130– 142. [14] J. Jiang, Nonlinear thermomec- hanical analysis of structures using û ekil 19. Shanghay Tower’ × n çevresel çelik sütunu ç × kartarak kademeli çökme analizi û ekil 20. Shanghai Tower binas × s × n kilit konumdaki elemanlar × ç × kart × ld × ktan sonra yap × lan kademeli y × k × lma senaryosu. (a) Kald × rma mahalli (b) eleman × m ç × kart × lmas × ndan sonra deformasyon Ç × kart × lan eleman (a) Ç × kartma bölgesi (b) Eleman × n ç × kart × lmas × ndan sonraki deformasyon OpenSees, PhD Dissertation, Uni- versity of Edinburgh, Edinburgh, UK, 2012. [15] J. Jiang, G.Q. Li, A.S. Usmani, Influ- ence of fire scenarios on progres- sive collapse mechanisms of steel framed structures, Steel Constr. Des. Res. 7 (2014) 169–172. [16] J. Jiang, G.Q. Li, A.S. Usmani, Prog- ressive collapse mechanisms of steel frames exposed to fire, Adv. Struct. Eng. 17 (3) (2014) 381–398. [17] J. Jiang, A.S. Usmani, G.Q. Li, Mo- delling of steel–concrete compo- site structures in fire using OpenSe- es, Adv. Struct. Eng. 17 (2) (2014) 249–264. [18] J. Jiang, A.S. Usmani, Modelling of steel frame structures in fire using OpenSees, Comput. Struct. 118 (2013) 90–99.

RkJQdWJsaXNoZXIy MTcyMTY=