Yangın ve Güvenlik Dergisi 183. Sayı (Mayıs-Haziran 2016)

YANGIN ve GÜVENL ø K SAYI 183 77 YANGIN - MAKALE • Kasischke, E. S., Hewson, J. H., Stocks, B., van derWerf, G., & Randerson, J. (2003). The use of ATSR active fire counts for estimating relative patter- ns of biomass burning — A study from boreal forest region. Geophysical Research Letters, 30. http://dx.doi.or- g/10.1029/2003GL017859. • Kaufman, Y. J.,Wald, A. E., Remer, L. A., Gao, B. -C., Li, R. -R., & Flynn, L. (1997). The MODIS 2.1 — m channel — Correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35, 1286–1298. • Larsen, I. J., MacDonald, L. H., Brown, E., Rough, D., Welsh, M. J., Pietraszek, J. H., ... Schaffrath, K. (2009). Causes of post-fire runoff and erosion: water repellency, cover or soil sealing? Soil Science Society of America Journal, 73, 1393–1407. • Liu, H., Randerson, J. T., Lindfors, J., & Chapin, F. S., III (2005). Chan- ges in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspec- tive. Journal of Geophysical Rese- arch-Atmospheres. http://dx.doi.or- g/10.1029/2004JD005158. • Loboda, T. V., & Csizar, I. (2007). Re- construction of fire spread within wildland fire events in Northern Eu- rasia from the MODIS active fire pro- duct. Global and Planetary Change, 56, 257–273. • Loboda, T. V., O’Neal, K., & Csizar, I. (2007). Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sensing of Environment, 109, 429–442. • Mell,W. E.,Manzello, S. L.,Marang- hides, A., Butry, D., & Rehm, R. G. (2010). Thewildlandurban interface fire problem — Current approaches and research needs. International Journal of Wildland Fire, 19, 238–351. • Morfitt, R., Barsi, J., Levy, R., Mark- ham, B., Micijevic, E., Ong, L., ... Van- derwerff, K. (2015). Landsat-8 Opera- tional Land Imager (OLI) radiometric performance on-orbit. Remote Sen- sing, 7, 2208–2237. • Morisette, J. T., Giglio, L., Csiszar, I., & Justice, C. O. (2005). Validation of the MODIS active fire product over Sout- hern Africa with ASTER data. Interna- tional Journal of Remote Sensing, 26(19), 4239–4264. • Oliva, P., & Schroeder,W. (2015). As- sessment of VIIRS 375mactive fire detection product for direct burned area mapping. Remote Sensing of Environment, 160, 144–155. • Oliveras, I., Meirelles, S. T., Hirakuri, V. L., Freitas, C. R., Miranda, H. S., & Pivello, V. R. (2012). Effects of fire re- gimes on herbaceous biomass and nutrient dynamics in the Brazilia sa- vanna. International Journal of Wild- land Fire, 22, 368–380. • Oppenheimer, C. (1991). Lava flow cooling estimated from Landsat The- matic Mapper data: The Lonquimay Eruption (Chile, 1989). Journal of Ge- ophysical Research, 96. http://dx.doi. org/10.1029/91JB01902. • Pozo, D., Olmo, F. J., & Alados-Arbo- ledas, L. (1997). Fire detection and growth monitoring using a multitem- poral technique on AVHRR mid-infra- red and thermal channels. Remote Sensing of Environment, 60, 111–120. • Roy, D.,Wulder,M. A., Loveland, T. R.,Woodcock, C. E., Allen, R. G., An- derson,M. C., ... Zhu, Z. (2014). Land- sat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. • Schoennagel, T., Nelson, C. R., The- obald, D. M., Carnwath, G. C., & Chapman, T. B. (2009). Implementa- tion of National Fire Plan treatments near the wildland-urban interface in the western United States. Proceedin- gs of the National Academy of Scien- ces, 106,10706–10711. • Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., & Morton, D. (2008a). Validation of GOES and MODIS active fire detec- tion products using ASTER and ETM+ data. Remote Sensing of Environ- ment, 112, 2711–2726. • Schroeder, W., Ruminski, M., Csiszar, I., Giglio, L., Prins, E., Schmidt, C., & Morisette, J. (2008b). Validation analyses of an operational fire mo- nitoring product: The hazard map- ping system. International Journal of Remote Sensing, 29, 6059–6066. • Schroeder,W., Oliva, P., Giglio, L., & Csiszar, I. (2014). The new VIIRS 375 m active fire detection data produ- ct: Algorithm description and initial assessment. Remote Sensing of Envi- ronment, 143, 85–96. • U.S. Department of the Interior – U.S. Geological Survey (2013). LDCM- CAL/VAL Algorithm Description Docu- ment, version 3.0. Digital document available at: http://landsat. usgs. gov/documents/LDCM_CVT_ADD. pdf (last accessed 22 June 2015) • Van derWerf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., ... van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10, 11707– 11735. • Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., & Roberts, G. J. (2009). An appro- ach to estimate global biomass burning emissions of organic and black carbon from MODIS fire ra- diative power. Journal of Geophy- sical Research, 114. http://dx.doi . org/10.1029/2008JD011188. • Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X., ... Wynne, K. K. (2006). Estimating emissions from fires in North America for air quality modeling. Atmosphe- ric Environment, 40, 3419–3432.

RkJQdWJsaXNoZXIy MTcyMTY=