Yangın ve Güvenlik Dergisi 202. Sayı (Ekim 2018)

28 Yangın ve Güvenlik / Ekim 2018 yanginguvenlik.com.tr AYIN KONUSU / MAKALE (3) Isı çıkış oranının odadaki sıcaklık ve görüş netliği üzerine büyük etkisi vardır. Daha büyük ısı çıkış oranı ya- yaların daha fazla tahliye süresine ihtiyaç duyacakları an- lamındadır. (4) Bir noktaya kadar, çıkış yeri genişliği tahliye süresini azaltabilir, ancak, çıkış yeterince genişse, tahliye süresinde bir azalma olmaz, bu nedenle çıkış genişliği özellikle kala- balık binalarda mimari tasarımda ciddi olarak dikkate alın- malıdır. Bu modelde duman ve alev etmenleri dikkate alınmasına rağmen, diğer etmenler göz ardı edilmiş olabilir. Gelecekte, yangın krizi altında yayaların hız değişimleri ve psikolojik etmenlerin dikkate alınması gibi modelde bazı genişletme çalışmaları yapılmalıdır. KAYNAKLAR [1] L. F. Henderson, 1971. The Statistics of Crowd Fluids, Na- ture 229, p. 381-383. [2] D. Helbing, 1992. A Fluid-Dynamic Model for the Move- ment of Pedestrians, Complex Systems 6, p. 391–415. [3] R. L. Hughes, 2003. The Flow of Human Crowds, Annual Review of Fluid Mechanics 35, p. 169–182. [4] M. Hilliges, R. Reiner, W. Weidlich, 1993. “A simulation Model of Dynamic Traffic Flow in Networks,” European Simulation Multi Conference, Lyon, France. [5] A. J. Mayne, 1954. Some Further Results in the Theory of Pedestrians and Road Traffic, Biometrika 41, p. 375–389. [6] D. Helbing, P. Molnar, 1995. Social Force Model for Pe- destrian Dynamics, Physical Review E 51, p. 4282–4286. [7] D.Helbing, I. Farkas, T. Vicsek, 2000. Simulating Dynami- cal Features of Escape Panic, Nature 407, p. 487–490. [8] A. Kirchner, H. Klüpfel, K. Nishinari, A. Schadschneider, M. Schreckenberg, 2004. Discretization Effects and the Influence of Walking Speed in Cellular Automata Models for Pedestrian Dynamics, Journal of Statistical Mechani- cs: Theory and Experiment, p. 10011. [9] H. Klüpfel, T. Meyer-K, M. Schreckenberg, 2001. Micros- copic Modeling of Pedestrian Motion–Comparison of an Evacuation Exercise in a Primary School to Simulation Results, Traffic and Granular Flow. [10] A. Schadschneider, 2001. “Cellular Automaton Approach to Pedestrian Dynamics-Theory,” Pedestrian and Evacua- tion Dynamics, Springer, pp. 75. [11] Z. G. Zhang, Q. Li, 2009. Study on People’s Evacuation with Cellular Automata, Computer Engineering&Design 8, p. 1991–1993. [12] M. Muramatsu, T. Irie, T. Nagatani, 1999. Jamming Transiti- on in Pedestrian Counter Flow, Physica A 267, p. 487–498. [13] Y. Tajima, T. Nagatani, 2002. Clogging Transition of Pe- destrian Flow in T-shaped Channel, Physica A 303, p. 239–250. [14] M. Isobe, D. Helbing, T. Nagatani, 2004. Experiment, Theory, and Simulation of the Evacuation of a Room Without Visibility, Physical Review E 69, p. 066132. [15] Y. Tajima, K. Takimoto, T. Nagatani, 2001. Scaling of Pe- destrian Channel Flow with a Bottleneck, Physica A 294, p. 257–268. [16] R. Y. Guo, H. J. Huang, 2008. A Mobile Lattice gas Model for Simulating Pedestrian Evacuation, Physica A 387, p. 580–586. [17] Y. Zheng, B. Jia, X. G. Li, N. Zhu, 2011. Evacuation Dyna- mics with Fire Spreading Based on Cellular Automaton, Physica A 390, p. 3147–3156. [18] C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, 2001. Simulation of Pedestrian Dynamics Using a two-Dimensional CellularAutomaton, Physica A 295, p. 507–525. [19] A. Kirchner, A. Schadschneider, 2002. Simulation of Evacuation Processes Using a Bionics-Inspired Cellular Automation Model for Pedestrian Dynamics, Physica A 312, p. 260–276. [20]K. Nishinari, A. Kirchner, A. Namazi, A. Schadschneider, 2004. Extended floor field CA model for Evacuation Dy- namics, IEICE Transactions on Information and Systems E 87D, p. 726–732. [21] K. Ekaterina, Tat’yana Yurgel’yan, K. Dmitriy, 2009. An Intelligent Floor Field Cellular Automata Model for Pe- destrian Dynamics, Arxiv: 0906.2707v1 [math-ph]. [22] H. J. Huang, R. Y. Guo, 2008. Static Floor Field and Exit Choice for Pedestrian Evacuation in Rooms with Internal Obstacles and Multiple Exits, Physical Review E 78, p. 021131. [23] W. F. Yuan, K. H. Tan, 2011. A Model for Simulation of Crowd Behaviour in the Evacuation From a Smoke-Filled Compartment, Physica A 390, p. 4210–4218. [24] P. Z. Yang, X. Wang, T. Liu, 2011. Agent-based Simulation of fire Emergency Evacuation with Fire and Human Inte- raction Model, Safety Science 49, p. 1130–1141. [25] EmilioN. M. Cirillo, Adrian Muntean, 2013. Dynamics of Pedestrians in Regions with no Visibility-A Lattice Mo- del Without Exclusion, Physica A 392, p. 3578–3588. [26] M. H. Ngugen, T. V. Ho, J. D. Zucker, 2013. Integration of Smoke Effect and Blind Evacuation Strategy (SEBES) within Fire Evacuation Simulation, Simulation Modeling Practice and Theory 36, p. 44–59. n

RkJQdWJsaXNoZXIy MTcyMTY=