39 YANGIN VE GÜVENLİK • OCAK - ŞUBAT / 2025 MAKALE 4. SONUÇLAR Bu çalışma, özel bir garajda çıkan bir EV yangınının simülasyon tabanlı bir araştırmasını sunmaktadır. Elde edilen sonuçlar, WM cihazının farklı çalışma basınçları altındaki yangınlar üzerindeki bastırma etkilerinin genellikle benzer olduğunu göstermiştir. İşlemde kurulan WM cihazlarının sayısı, yangının büyümesi ve davranışı üzerinde daha önemli bir etkiye sahiptir. NN = 3 olan 6 MPa'lık bir çalışma basıncı kullanılarak su en az tüketilir. Hem güvenlik hem de ekonomi göz önünde bulundurularak, garaja 6 MPa'lık bir çalışma basıncıyla üç WM nozulu takılması önerilir. 6 MPa ve 3 nozulla, ısı salınım tepe noktası %17 oranında azalır ve tepe oluşma süresi 0 nozula kıyasla %26 oranında gecikir. Ek olarak, duman tabakasının ve kapalı alandaki hava tabakasının karışma hızı hızlanır ve bu da görüş mesafesinde bir azalmaya neden olur. Dahası, dikey yönde, yangın kaynağından uzaklık ne kadar kısa olursa, sıcaklık tepe noktasındaki düşüş o kadar büyük olur. Sıcaklık ölçüm verilerindeki maksimum düşüş %70 olmuştur. n NN = 1 NN = 2 NN = 3 A-1 −15.1 % −45.3 % −71.7 % A-3 −6.0 % −20.9 % −30.0 % A-5 −4.2 % −20.8 % −20.8 % B-1 −39.6 % −48.4 % −55.0 % B-3 −25.6 % −24.0 % −38.4 % B-5 −18.7 % −18.7 % −30.6 % Tablo 3. 6,0 MPa çalışma basıncında termokuplların tepe sıcaklık değişimi. [1] F. Sun, New Energy Vehicle Big Data Research Report 2022, 2022. [2] R. Nasir, H. Meng, S.R. Ahmad, L.A. Waseem, S.A.A. Naqvi, M. Shahid, K. Nasir, M. Aslam, S.F. Jilani, W.J.C.S. Soufan, Towards Sustainable Transportation: A Case Study Analysis of Climate-Responsive Strategies in a Developing Nation, 2024 104117. [3] P. Sun, R. Bisschop, H. Niu, X.J.F. Huang, A Review of Battery Fires in Electric Vehicles, 56, 2020, pp. 1361–1410. [4] A. Dorsz, M.J.E. Lewandowski, Analysis of Fire Hazards Associated with the Operation of Electric Vehicles in Enclosed Structures, 15, 2021, p. 11. [5] H.R. Boehmer, M.S. Klassen, S.M.J.F.t. Olenick, Fire Hazard Analysis of Modern Vehicles in Parking Facilities, 57, 2021, pp. 2097–2127. [6] Z.-H. Wu, Y. Wu, Y. Tang, J.-C. Jiang, A. Huang, E. Protection, Evaluation of Composite Flame-Retardant Electrolyte Additives Improvement on the Safety Performance of Lithium-Ion Batteries, 169, 2023, pp. 285–292. [7] Y.-Q. Wang, L.-J. Xie, H.-Q. Sun, X. Wang, H.-L. Zhou, Y. Tang, J.-C. Jiang, A. Huang, E. Protection, 4, 5-Difluoro-1, 3-dioxolan-2-one as a film-forming additive improves the cycling and thermal stability of SiO/C anode Li-ion batteries 183 (2024) 496–504. [8] Y. Li, G. Liu, Z.J. Li, Numerical Modeling of Thermal Runaway in High-Energy Lithium-Ion Battery Packs Induced by Multipoint Heating, 38, 2022 102335. [9] B. Xu, J. Lee, D. Kwon, L. Kong, M.J.R. Pecht, S.E. Reviews, Mitigation strategies for Li-ion battery thermal runaway, Review 150 (2021) 111437. [10] S. Kang, M. Kwon, J.Y. Choi, S.J.A.E. Choi, Full-scale Fire Testing of Battery Electric Vehicles, 332, 2023 120497. [11] J. Sun, B. Mao, Q.J.F.S.J. Wang, Progress on the Research of Fire Behavior and Fire Protection of Lithium Ion Battery, 120, 2021 103119. [12] M.-L. Zhang, X.-L. Dong, Y. Tang, A.-C. Huang, F. Chen, Q.-C. Kang, Z.-J. Shu, Z. Xing, Experimental Investigations of Extinguishing Sodium Pool Fires Using Modified Expandable Graphite Powders, 32, 2022 101911. [13] X. Li, M. Zhang, Z. Zhou, Y. Zhu, K. Du, X.J. Zhou, A Novel Dry Powder Extinguishant with High Cooling Performance for Suppressing Lithium Ion Battery Fires, 42, 2023 102756. [14] Z. Tianwei, L. Hao, S. Jiwei, W. Bo, W. Yong, S. Xinchen, G.J. Zidong, Synergistic Inhibition Effect on Lithium-Ion Batteries during Thermal Runaway by N2- TwinFluid Liquid Mist, 37, 2022 102269. [15] L. Zhang, Q. Duan, Y. Liu, J. Xu, J. Sun, H. Xiao, Q. Wang, Experimental Investigation of Water Spray on Suppressing Lithium-Ion Battery Fires, 120, 2021 103117. [16] Y. Qiu, F.J.I.J. Jiang, M. Transfer, A Review on Passive and Active Strategies of Enhancing the Safety of Lithium-Ion Batteries, 184, 2022 122288. [17] Y. Cui, J.J.P.S. Liu, E. Protection, Research progress of water mist fire extinguishing technology and its application in battery fires 149 (2021) 559–574. [18] J. Xu, Q. Duan, L. Zhang, Y. Liu, C. Zhao, Q.J.P.S. Wang, E. Protection, Experimental study of the cooling effect of water mist on 18650 lithium-ion battery at different initial temperatures 157 (2022) 156–166. [19] Q. Ming-Zhe, C. Yan, N. Shuai-Jie, C.J.F.S. Bei-Hua, Technology, Experimental study on the effectiveness of water spray systems in suppressing electric vehicle fires 41 (2022) 82. [20] M. Arvidson, Ö.J.F.T. Westlund, Water spray fire suppression tests comparing gasoline-fuelled and battery electric, Vehicles (2023) 1–24. [21] X. Liu, D. Xu, X. Meng, Z. Lu, Y. Chen, C. Liu, Q.J. Huang, Thermal runaway suppression effect of water mist on 18650-cylinder lithium-ion batteries with different cathode, Materials 35 (2022) 102155. [22] Y.-C. Liu, J.-C. Jiang, A. Huang, Calorimetry, in: Experimental Study on Extinguishing Oil Fire by Water Mist with Polymer Composite Additives, 148, 2023, pp. 4811–4822. [23] C. Ji, Y. Liu, P. Qi, Z. Zhang, S.J.F.T. Zhang, Simulation Investigation of Water Spray on Suppressing Lithium-Ion Battery Fires, 59, 2023, pp. 1221–1246. [24] J. Xie, J. Li, J. Wang, J.J.J. Jiang, Fire Protection Design of a Lithium-Ion Battery Warehouse Based on Numerical Simulation Results, 80, 2022 104885. [25] D. Brzezinska, P.J.E. Bryant, Performance-based Analysis in Evaluation of Safety in Car Parks under Electric Vehicle Fire Conditions, 15, 2022, p. 649. [26] S. Di Matteo, Fire Risk of Electric Vehicles in Confined Spaces, 2023 Politecnico di Torino. [27] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, K.J.N Overholt, Fire Dynamics Simulator User’s Guide, 1019, 2013, pp. 1–339. [28] S. Li, X. Li, Numerical Simulation of FDS Fire, 2019. [29] Q. Wang, B. Mao, S.I. Stoliarov, J.J.P. Sun, C. Science, A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies, 73, 2019, pp. 95–131. [30] P. Sun, R. Bisschop, H. Niu, X.J.F. Huang, A Review of Battery Fires in Electric Vehicles, 56, 2020, pp. 1361–1410. [31] Z. Yan, Y. Wang, L.J. Chao, Simulation Study on Fire and Evacuation of Super High-Rise Commercial Building, 52, 2023 103519. [32] C. Zhao, W. Hu, D. Meng, W. Mi, X. Wang, J.J. Wang, Full-scale experimental study of the characteristics of electric vehicle fires process and response measures 53 (2024) 103889. KAYNAKLAR
RkJQdWJsaXNoZXIy MTcyMTY=